Alignment of carbon nanotubes in nematic liquid crystals.
نویسندگان
چکیده
The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial tension of the nanotubes in the nematic host fluid. In order to relate the degree of alignment of the nanotubes to the properties of the nematic liquid crystal, we treat the two components on the same footing and combine Landau-de Gennes free energies for the thermotropic ordering of the liquid crystal and for the lyotropic nematic ordering of carbon nanotubes caused by their mutually excluded volumes. The phase ordering of the binary mixture is analyzed as a function of the volume fraction of the carbon nanotubes, the strength of the coupling and the temperature. We find that the degree of ordering of the nanorods is enslaved by the properties of the host liquid and that it can be tuned by raising or lowering the temperature or by increasing or decreasing their concentration. By comparing the theory to recent experiments, we find the anchoring energy of multiwalled carbon nanotubes to be in the range from 10(-10) to 10(-7) N m(-1).
منابع مشابه
Liquid crystal–carbon nanotube dispersions
Parallel alignment of nanotubes can be obtained by dispersion in a self-organizing anisotropic fluid such as a nematic liquid crystal. Exploiting the cooperative reorientation of liquid crystals, the overall direction of the nanotube alignment can be controlled both statically and dynamically by the application of external fields. These can be electric, magnetic, mechanic, or even optic in natu...
متن کاملLiquid crystal-carbon nanotubes mixtures.
The self-organizing properties of nematic liquid crystals (LCs) can be used to align carbon nanotubes (CNTs) dispersed in them. In the previous paper [P. van der Schoot, V. Popa-Nita, and S. Kralj, J. Phys. Chem. B 112, 4512 (2008)], we have considered the weak anchoring limit of the nematic LC molecules at the nanotube's surface, where the CNT alignment is caused by the anisotropic interfacial...
متن کاملDynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field
The dynamic behavior of a nematic liquid crystal with added carbon nanotubes (CNTs) in an electric field was analyzed. A theoretical model based on elastic continuum theory was developed and the relaxation times of nematic liquid crystals with CNTs were evaluated. Experiments made with single-walled carbon nanotubes dispersed in nematic 4-cyano-4'-pentylbiphenyl (5CB) indicated a significant di...
متن کاملCarbon nanotube-induced macroscopic helical twist in an achiral nematic liquid crystal
An achiral nematic liquid crystal was doped with a small quantity of carbon nanotubes, and the mixture was found to induce an average mechanical twist over macroscopic dimensions. The nanotube-induced chiral pitch length P was determined as a function of average nanotube concentration by measuring the radii of curvature of reverse twist disclination lines in 90° twisted nematic cells. The resul...
متن کاملUnusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal.
Unusual double four-lobe nematic liquid crystal (LC) textures were observed in the carbon nanotube (CNT)-doped nematic LC under electric field. Through the electro-optical studies in a wide range of vertical electric fields in the direction of the long axis of the LC molecules, it was realized that the double four-lobe nematic LC textures were formed in the range of 120 to 160 V(rms) at 1 Hz. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 15 شماره
صفحات -
تاریخ انتشار 2008